Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mov Disord ; 38(10): 1795-1805, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37401265

RESUMO

The validation of objective and easy-to-implement biomarkers that can monitor the effects of fast-acting drugs among Parkinson's disease (PD) patients would benefit antiparkinsonian drug development. We developed composite biomarkers to detect levodopa/carbidopa effects and to estimate PD symptom severity. For this development, we trained machine learning algorithms to select the optimal combination of finger tapping task features to predict treatment effects and disease severity. Data were collected during a placebo-controlled, crossover study with 20 PD patients. The alternate index and middle finger tapping (IMFT), alternative index finger tapping (IFT), and thumb-index finger tapping (TIFT) tasks and the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) III were performed during treatment. We trained classification algorithms to select features consisting of the MDS-UPDRS III item scores; the individual IMFT, IFT, and TIFT; and all three tapping tasks collectively to classify treatment effects. Furthermore, we trained regression algorithms to estimate the MDS-UPDRS III total score using the tapping task features individually and collectively. The IFT composite biomarker had the best classification performance (83.50% accuracy, 93.95% precision) and outperformed the MDS-UPDRS III composite biomarker (75.75% accuracy, 73.93% precision). It also achieved the best performance when the MDS-UPDRS III total score was estimated (mean absolute error: 7.87, Pearson's correlation: 0.69). We demonstrated that the IFT composite biomarker outperformed the combined tapping tasks and the MDS-UPDRS III composite biomarkers in detecting treatment effects. This provides evidence for adopting the IFT composite biomarker for detecting antiparkinsonian treatment effect in clinical trials. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Humanos , Estudos Cross-Over , Doença de Parkinson/diagnóstico , Doença de Parkinson/tratamento farmacológico , Antiparkinsonianos/farmacologia , Antiparkinsonianos/uso terapêutico , Índice de Gravidade de Doença , Testes de Estado Mental e Demência , Biomarcadores
2.
JMIR Form Res ; 7: e41178, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36920465

RESUMO

BACKGROUND: Facioscapulohumeral muscular dystrophy (FSHD) is a progressive neuromuscular disease. Its slow and variable progression makes the development of new treatments highly dependent on validated biomarkers that can quantify disease progression and response to drug interventions. OBJECTIVE: We aimed to build a tool that estimates FSHD clinical severity based on behavioral features captured using smartphone and remote sensor data. The adoption of remote monitoring tools, such as smartphones and wearables, would provide a novel opportunity for continuous, passive, and objective monitoring of FSHD symptom severity outside the clinic. METHODS: In total, 38 genetically confirmed patients with FSHD were enrolled. The FSHD Clinical Score and the Timed Up and Go (TUG) test were used to assess FSHD symptom severity at days 0 and 42. Remote sensor data were collected using an Android smartphone, Withings Steel HR+, Body+, and BPM Connect+ for 6 continuous weeks. We created 2 single-task regression models that estimated the FSHD Clinical Score and TUG separately. Further, we built 1 multitask regression model that estimated the 2 clinical assessments simultaneously. Further, we assessed how an increasingly incremental time window affected the model performance. To do so, we trained the models on an incrementally increasing time window (from day 1 until day 14) and evaluated the predictions of the clinical severity on the remaining 4 weeks of data. RESULTS: The single-task regression models achieved an R2 of 0.57 and 0.59 and a root-mean-square error (RMSE) of 2.09 and 1.66 when estimating FSHD Clinical Score and TUG, respectively. Time spent at a health-related location (such as a gym or hospital) and call duration were features that were predictive of both clinical assessments. The multitask model achieved an R2 of 0.66 and 0.81 and an RMSE of 1.97 and 1.61 for the FSHD Clinical Score and TUG, respectively, and therefore outperformed the single-task models in estimating clinical severity. The 3 most important features selected by the multitask model were light sleep duration, total steps per day, and mean steps per minute. Using an increasing time window (starting from day 1 to day 14) for the FSHD Clinical Score, TUG, and multitask estimation yielded an average R2 of 0.65, 0.79, and 0.76 and an average RMSE of 3.37, 2.05, and 4.37, respectively. CONCLUSIONS: We demonstrated that smartphone and remote sensor data could be used to estimate FSHD clinical severity and therefore complement the assessment of FSHD outside the clinic. In addition, our results illustrated that training the models on the first week of data allows for consistent and stable prediction of FSHD symptom severity. Longitudinal follow-up studies should be conducted to further validate the reliability and validity of the multitask model as a tool to monitor disease progression over a longer period. TRIAL REGISTRATION: ClinicalTrials.gov NCT04999735; https://www.clinicaltrials.gov/ct2/show/NCT04999735.

3.
JMIR Form Res ; 6(9): e31775, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36098990

RESUMO

BACKGROUND: Facioscapulohumeral dystrophy (FSHD) is a progressive muscle dystrophy disorder leading to significant disability. Currently, FSHD symptom severity is assessed by clinical assessments such as the FSHD clinical score and the Timed Up-and-Go test. These assessments are limited in their ability to capture changes continuously and the full impact of the disease on patients' quality of life. Real-world data related to physical activity, sleep, and social behavior could potentially provide additional insight into the impact of the disease and might be useful in assessing treatment effects on aspects that are important contributors to the functioning and well-being of patients with FSHD. OBJECTIVE: This study investigated the feasibility of using smartphones and wearables to capture symptoms related to FSHD based on a continuous collection of multiple features, such as the number of steps, sleep, and app use. We also identified features that can be used to differentiate between patients with FSHD and non-FSHD controls. METHODS: In this exploratory noninterventional study, 58 participants (n=38, 66%, patients with FSHD and n=20, 34%, non-FSHD controls) were monitored using a smartphone monitoring app for 6 weeks. On the first and last day of the study period, clinicians assessed the participants' FSHD clinical score and Timed Up-and-Go test time. Participants installed the app on their Android smartphones, were given a smartwatch, and were instructed to measure their weight and blood pressure on a weekly basis using a scale and blood pressure monitor. The user experience and perceived burden of the app on participants' smartphones were assessed at 6 weeks using a questionnaire. With the data collected, we sought to identify the behavioral features that were most salient in distinguishing the 2 groups (patients with FSHD and non-FSHD controls) and the optimal time window to perform the classification. RESULTS: Overall, the participants stated that the app was well tolerated, but 67% (39/58) noticed a difference in battery life using all 6 weeks of data, we classified patients with FSHD and non-FSHD controls with 93% accuracy, 100% sensitivity, and 80% specificity. We found that the optimal time window for the classification is the first day of data collection and the first week of data collection, which yielded an accuracy, sensitivity, and specificity of 95.8%, 100%, and 94.4%, respectively. Features relating to smartphone acceleration, app use, location, physical activity, sleep, and call behavior were the most salient features for the classification. CONCLUSIONS: Remotely monitored data collection allowed for the collection of daily activity data in patients with FSHD and non-FSHD controls for 6 weeks. We demonstrated the initial ability to detect differences in features in patients with FSHD and non-FSHD controls using smartphones and wearables, mainly based on data related to physical and social activity. TRIAL REGISTRATION: ClinicalTrials.gov NCT04999735; https://www.clinicaltrials.gov/ct2/show/NCT04999735.

4.
Exp Brain Res ; 240(2): 631-649, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34993590

RESUMO

Sleep deprivation has been shown to increase pain intensity and decrease pain thresholds in healthy subjects. In chronic pain patients, sleep impairment often worsens the perceived pain intensity. This increased pain perception is the result of altered nociceptive processing. We recently developed a method to quantify and monitor altered nociceptive processing by simultaneous tracking of psychophysical detection thresholds and recording of evoked cortical potentials during intra-epidermal electric stimulation. In this study, we assessed the sensitivity of nociceptive detection thresholds and evoked potentials to altered nociceptive processing after sleep deprivation in an exploratory study with 24 healthy male and 24 healthy female subjects. In each subject, we tracked nociceptive detection thresholds and recorded central evoked potentials in response to 180 single- and 180 double-pulse intra-epidermal electric stimuli. Results showed that the detection thresholds for single- and double-pulse stimuli and the average central evoked potential for single-pulse stimuli were significantly decreased after sleep deprivation. When analyzed separated by sex, these effects were only significant in the male population. Multivariate analysis showed that the decrease of central evoked potential was associated with a decrease of task-related evoked activity. Measurement repetition led to a decrease of the detection threshold to double-pulse stimuli in the mixed and the female population, but did not significantly affect any other outcome measures. These results suggest that simultaneous tracking of psychophysical detection thresholds and evoked potentials is a useful method to observe altered nociceptive processing after sleep deprivation, but is also sensitive to sex differences and measurement repetition.


Assuntos
Nociceptividade , Privação do Sono , Estimulação Elétrica/métodos , Potenciais Evocados , Feminino , Humanos , Masculino , Dor , Limiar da Dor/fisiologia
5.
Br J Clin Pharmacol ; 88(6): 2926-2937, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35028950

RESUMO

AIMS: The purpose of this study was to investigate pharmacodynamic effects of drugs targeting cortical excitability using transcranial magnetic stimulation (TMS) combined with electromyography (EMG) and electroencephalography (EEG) in healthy subjects, to further develop TMS outcomes as biomarkers for proof-of-mechanism in early-phase clinical drug development. Antiepileptic drugs presumably modulate cortical excitability. Therefore, we studied effects of levetiracetam, valproic acid and lorazepam on cortical excitability in a double-blind, placebo-controlled, 4-way cross-over study. METHODS: In 16 healthy male subjects, single- and paired-pulse TMS-EMG-EEG measurements were performed predose and 1.5, 7 and 24 hours postdose. Treatment effects on motor-evoked potential, short and long intracortical inhibition and TMS-evoked potential amplitudes, were analysed using a mixed model ANCOVA and cluster-based permutation analysis. RESULTS: We show that motor-evoked potential amplitudes decreased after administration of levetiracetam (estimated difference [ED] -378.4 µV; 95%CI: -644.3, -112.5 µV; P < .01), valproic acid (ED -268.8 µV; 95%CI: -532.9, -4.6 µV; P = .047) and lorazepam (ED -330.7 µV; 95%CI: -595.6, -65.8 µV; P = .02) when compared with placebo. Long intracortical inhibition was enhanced by levetiracetam (ED -60.3%; 95%CI: -87.1%, -33.5%; P < .001) and lorazepam (ED -68.2%; 95%CI: -94.7%, -41.7%; P < .001) at a 50-ms interstimulus interval. Levetiracetam increased TMS-evoked potential component N45 (P = .004) in a central cluster and decreased N100 (P < .001) in a contralateral cluster. CONCLUSION: This study shows that levetiracetam, valproic acid and lorazepam decrease cortical excitability, which can be detected using TMS-EMG-EEG in healthy subjects. These findings provide support for the use of TMS excitability measures as biomarkers to demonstrate pharmacodynamic effects of drugs that influence cortical excitability.


Assuntos
Lorazepam , Estimulação Magnética Transcraniana , Biomarcadores , Estudos Cross-Over , Eletroencefalografia , Humanos , Levetiracetam/farmacologia , Lorazepam/farmacologia , Masculino , Preparações Farmacêuticas , Ácido Valproico/farmacologia
6.
PLoS One ; 16(12): e0260783, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34874977

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease that affects almost 2% of the population above the age of 65. To better quantify the effects of new medications, fast and objective methods are needed. Touchscreen-based tapping tasks are simple yet effective tools for quantifying drug effects on PD-related motor symptoms, especially bradykinesia. However, there is no consensus on the optimal task set-up. The present study compares four tapping tasks in 14 healthy participants. In alternate finger tapping (AFT), tapping occurred with the index and middle finger with 2.5 cm between targets, whereas in alternate side tapping (AST) the index finger with 20 cm between targets was used. Both configurations were tested with or without the presence of a visual cue. Moreover, for each tapping task, within- and between-day repeatability and (potential) sensitivity of the calculated parameters were assessed. Visual cueing reduced tapping speed and rhythm, and improved accuracy. This effect was most pronounced for AST. On average, AST had a lower tapping speed with impaired accuracy and improved rhythm compared to AFT. Of all parameters, the total number of taps and mean spatial error had the highest repeatability and sensitivity. The findings suggest against the use of visual cueing because it is crucial that parameters can vary freely to accurately capture medication effects. The choice for AFT or AST depends on the research question, as these tasks assess different aspects of movement. These results encourage further validation of non-cued AFT and AST in PD patients.


Assuntos
Dedos/fisiologia , Destreza Motora/fisiologia , Movimento , Doença de Parkinson/terapia , Desempenho Psicomotor , Adulto , Feminino , Humanos , Masculino
7.
JMIR Form Res ; 5(12): e31890, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34967757

RESUMO

BACKGROUND: Although electrocardiography is the gold standard for heart rate (HR) recording in clinical trials, the increasing availability of smartwatch-based HR monitors opens up possibilities for drug development studies. Smartwatches allow for inexpensive, unobtrusive, and continuous HR estimation for potential detection of treatment effects outside the clinic, during daily life. OBJECTIVE: The aim of this study is to evaluate the repeatability and sensitivity of smartwatch-based HR estimates collected during a randomized clinical trial. METHODS: The data were collected as part of a multiple-dose, investigator-blinded, randomized, placebo-controlled, parallel-group study of 12 patients with Parkinson disease. After a 6-day baseline period, 4 and 8 patients were treated for 7 days with an ascending dose of placebo and clenbuterol, respectively. Throughout the study, the smartwatch provided HR and sleep state estimates. The HR estimates were quantified as the 2.5th, 50th, and 97.5th percentiles within awake and asleep segments. Linear mixed models were used to calculate the following: (1) the intraclass correlation coefficient (ICC) of estimated sleep durations, (2) the ICC and minimum detectable effect (MDE) of the HR estimates, and (3) the effect sizes of the HR estimates. RESULTS: Sleep duration was moderately repeatable (ICC=0.64) and was not significantly affected by study day (P=.83), clenbuterol (P=.43), and study day by clenbuterol (P=.73). Clenbuterol-induced changes were detected in the asleep HR as of the first night (+3.79 beats per minute [bpm], P=.04) and in the awake HR as of the third day (+8.79 bpm, P=.001). The median HR while asleep had the highest repeatability (ICC=0.70). The MDE (N=12) was found to be smaller when patients were asleep (6.8 bpm to 11.7 bpm) than while awake (10.7 bpm to 22.1 bpm). Overall, the effect sizes for clenbuterol-induced changes were higher while asleep (0.49 to 2.75) than while awake (0.08 to 1.94). CONCLUSIONS: We demonstrated the feasibility of using smartwatch-based HR estimates to detect clenbuterol-induced changes during clinical trials. The asleep HR estimates were most repeatable and sensitive to treatment effects. We conclude that smartwatch-based HR estimates obtained during daily living in a clinical trial can be used to detect and track treatment effects. TRIAL REGISTRATION: Netherlands Trials Register NL8002; https://www.trialregister.nl/trial/8002.

8.
Neurotherapeutics ; 17(3): 1300-1310, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32462407

RESUMO

There is a lack of reliable, repeatable, and non-invasive clinical endpoints when investigating treatments for intellectual disability (ID). The aim of this study is to explore a novel approach towards developing new endpoints for neurodevelopmental disorders, in this case for ARID1B-related ID. In this study, twelve subjects with ARID1B-related ID and twelve age-matched controls were included in this observational case-control study. Subjects performed a battery of non-invasive neurobehavioral and neurophysiological assessments on two study days. Test domains included cognition, executive functioning, and eye tracking. Furthermore, several electrophysiological assessments were performed. Subjects wore a smartwatch (Withings® Steel HR) for 6 days. Tests were systematically assessed regarding tolerability, variability, repeatability, difference with control group, and correlation with traditional endpoints. Animal fluency, adaptive tracking, body sway, and smooth pursuit eye movements were assessed as fit-for-purpose regarding all criteria, while physical activity, heart rate, and sleep parameters show promise as well. The event-related potential waveform of the passive oddball and visual evoked potential tasks showed discriminatory ability, but EEG assessments were perceived as extremely burdensome. This approach successfully identified fit-for-purpose candidate endpoints for ARID1B-related ID and possibly for other neurodevelopmental disorders. Next, results could be replicated in different ID populations or the assessments could be included as exploratory endpoint in interventional trials in ARID1B-related ID.


Assuntos
Proteínas de Ligação a DNA/genética , Determinação de Ponto Final/métodos , Variação Genética/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Animais , Estudos de Casos e Controles , Criança , Pré-Escolar , Potenciais Evocados Visuais/genética , Função Executiva/fisiologia , Feminino , Humanos , Deficiência Intelectual/psicologia , Masculino , Estimulação Luminosa/métodos , Adulto Jovem
9.
J Clin Mov Disord ; 7: 4, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32280482

RESUMO

BACKGROUND: To quantify pharmacological effects on tremor in patients with essential tremor (ET) or Parkinson's Disease (PD), laboratory-grade accelerometers have previously been used. Over the last years, consumer products such as smartphones and smartwatches have been increasingly applied to measure tremor in an easy way. However, it is unknown how the technical performance of these consumer product accelerometers (CPAs) compares to laboratory-grade accelerometers (LGA). This study was performed to compare the technical performance of CPAs with LGA to measure tremor in patients with Parkinson's Disease (PD) and essential tremor (ET). METHODS: In ten patients with PD and ten with ET, tremor peak frequency and corresponding amplitude were measured with 7 different CPAs (Apple iPhone 7, Apple iPod Touch 5, Apple watch 2, Huawei Nexus 6P, Huawei watch, mbientlabMetaWear (MW) watch, mbientlab MW clip) and compared to a LGA (Biometrics ACL300) in resting and extended arm position. RESULTS: Both in PD and ET patients, the peak frequency of CPAs did not significantly differ from the LGA in terms of limits of agreement. For the amplitude at peak frequency, only the iPhone and MW watch performed comparable to the LGA in ET patients, while in PD patients all methods performed comparable except for the iPod Touch and Huawei Nexus. Amplitude was higher when measured with distally-located CPAs (Clip, iPhone, iPod) compared with proximally-located CPAs (all watches). The variability between subjects was higher than within subjects for frequency (25.1% vs. 13.4%) and amplitude measurement (331% vs. 53.6%). Resting arm position resulted in lower intra-individual variability for frequency and amplitude (13.4 and 53.5%) compared to extended arm position (17.8 and 58.1%). CONCLUSIONS: Peak frequencies of tremor could be measured with all tested CPAs, with similar performance as LGA. The amplitude measurements appeared to be driven by anatomical location of the device and can therefore not be compared. Our results show that the tested consumer products can be used for tremography, allowing at-home measurements, in particular in studies with a cross-over or intra-individual comparison design using the resting arm position. TRIAL REGISTRATION: This trial was registered in the Dutch Competent Authority (CCMO) database with number NL60672.058.17 on May 30th 2017.

10.
Behav Res Methods ; 52(4): 1617-1628, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31965477

RESUMO

Measuring altered nociceptive processing involved in chronic pain is difficult due to a lack of objective methods. Potential methods to characterize human nociceptive processing involve measuring neurophysiological activity and psychophysical responses to well-defined stimuli. To reliably measure neurophysiological activity in response to nociceptive stimulation using EEG, synchronized activation of nerve fibers and a large number of stimuli are required. On the other hand, to reliably measure psychophysical detection thresholds, selection of stimulus amplitudes around the detection threshold and many stimulus-response pairs are required. Combining the two techniques helps in quantifying the properties of nociceptive processing related to detected and non-detected stimuli around the detection threshold.The two techniques were combined in an experiment including 20 healthy participants to study the effect of intra-epidermal electrical stimulus properties (i.e. amplitude, single- or double-pulse and trial number) on the detection thresholds and vertex potentials. Generalized mixed regression and linear mixed regression were used to quantify the psychophysical detection probability and neurophysiological EEG responses, respectively.It was shown that the detection probability is significantly modulated by the stimulus amplitude, trial number, and the interaction between stimulus type and amplitude. Furthermore, EEG responses were significantly modulated by stimulus detection and trial number. Hence, we successfully demonstrated the possibility to simultaneously obtain information on psychophysical and neurophysiological properties of nociceptive processing. These results warrant further investigation of the potential of this method to observe altered nociceptive processing.


Assuntos
Potenciais Evocados , Nociceptividade , Humanos , Probabilidade
11.
Front Comput Neurosci ; 10: 49, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27252644

RESUMO

Physiological properties of peripheral and central nociceptive subsystems can be altered over time due to medical interventions. The effective change for the whole nociceptive system can be reflected in changes of psychophysical characteristics, e.g., detection thresholds. However, it is challenging to separate contributions of distinct altered mechanisms with measurements of thresholds only. Here, we aim to understand how these alterations affect Aδ-fiber-mediated nociceptive detection of electrocutaneous stimuli. First, with a neurophysiology-based model, we study the effects of single-model parameters on detection thresholds. Second, we derive an expression of model parameters determining the functional relationship between detection thresholds and the interpulse interval for double-pulse stimuli. Third, in a case study with topical capsaicin treatment, we translate neuroplasticity into plausible changes of model parameters. Model simulations qualitatively agree with changes in experimental detection thresholds. The simulations with individual forms of neuroplasticity confirm that nerve degeneration is the dominant mechanism for capsaicin-induced increases in detection thresholds. In addition, our study suggests that capsaicin-induced central plasticity may last at least 1 month.

12.
Exp Brain Res ; 234(9): 2505-14, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27142052

RESUMO

Pain disorders can be initiated and maintained by malfunctioning of one or several mechanisms underlying the nociceptive function. Psychophysical procedures allow the estimation of nociceptive detection thresholds using intra-epidermal electrical stimuli. By varying the temporal properties of electrical stimuli, various contributions of nociceptive processes to stimulus processing can be observed. To observe the responsiveness of nociceptive thresholds to changes in nociceptive function, a model of capsaicin-induced nerve defunctionalization was used. Its effect on nociceptive detections thresholds was investigated over a period of 84 days. A cutaneous capsaicin (8 %) patch was applied for 60 min to the upper leg of eight healthy human participants. Single- and double-pulse electrical stimuli were presented in a pseudo-random order using an intra-epidermal electrode. Stimuli and corresponding responses were recorded on both treated and untreated skin areas prior to capsaicin application and on days 2, 7, 28, and 84. Increases in electrical detection thresholds at the capsaicin area were observed on days 2 and 7 for single-pulse stimuli. Detection thresholds corresponding to double-pulse stimuli were increased on days 7 and 28, suggesting a delayed and longer lasting effect on double-pulse stimuli. In the present study, it was demonstrated that the responsiveness of detection thresholds to capsaicin application depends on the temporal properties of electrical stimuli. The observation of capsaicin-induced changes by estimation of detection thresholds revealed different time patterns of contributions of peripheral and central mechanisms to stimulus processing.


Assuntos
Capsaicina/farmacologia , Temperatura Alta/efeitos adversos , Limiar da Dor/efeitos dos fármacos , Dor/fisiopatologia , Pele/efeitos dos fármacos , Adolescente , Adulto , Idoso , Estimulação Elétrica/métodos , Feminino , Humanos , Hiperalgesia/fisiopatologia , Masculino , Pessoa de Meia-Idade , Medição da Dor/métodos , Limiar da Dor/fisiologia , Estimulação Física/métodos , Psicofísica/métodos , Pele/inervação , Adulto Jovem
13.
Exp Brain Res ; 234(1): 219-27, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26438507

RESUMO

Chronic pain disorders can be initiated and maintained by malfunctioning of one or several mechanisms underlying the nociceptive function. Although several quantitative sensory testing methods exist to characterize the nociceptive function, it remains difficult to distinguish the contributions of individual mechanisms. Intra-epidermal electrical stimulation of nociceptive fibers allows defining stimuli with temporal properties within the timescale of these mechanisms. Here, we studied the effect of stimulus properties on the psychophysical detection probability. A psychophysical detection experiment was conducted including 30 healthy human participants. Participants were presented with electrical stimuli having various temporal properties. The pulse-width was varied for single pulse stimuli (either 420 or 840 µs), and the inter-pulse interval for double pulse stimuli (10, 50, or 100 ms). Generalized linear mixed models were used to obtain estimates of thresholds and slopes of the psychophysical function. The 840-µs single pulse resulted in a lower threshold and steeper slope of the psychophysical function than the 420-µs single pulse. Moreover, a double-pulse stimulus resulted in a lower threshold and steeper slope than single pulse stimuli. The slopes were similar between the double pulse stimuli, but thresholds slightly increased with increasing inter-pulse intervals. In the present study, it was demonstrated that varying the temporal properties of intra-epidermal electrical stimuli results in variations in nociceptive processing. The estimated thresholds and slopes corresponding to the selection of temporal properties suggest that contributions of peripheral and central nociceptive mechanisms can be reflected in psychophysical functions.


Assuntos
Estimulação Elétrica/métodos , Epiderme/fisiologia , Nociceptividade/fisiologia , Limiar da Dor/fisiologia , Psicofísica/métodos , Adulto , Feminino , Humanos , Masculino , Probabilidade , Adulto Jovem
14.
Biol Cybern ; 109(4-5): 479-91, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26228799

RESUMO

Sensitization is an example of malfunctioning of the nociceptive pathway in either the peripheral or central nervous system. Using quantitative sensory testing, one can only infer sensitization, but not determine the defective subsystem. The states of the subsystems may be characterized using computational modeling together with experimental data. Here, we develop a neurophysiologically plausible model replicating experimental observations from a psychophysical human subject study. We study the effects of single temporal stimulus parameters on detection thresholds corresponding to a 0.5 detection probability. To model peripheral activation and central processing, we adapt a stochastic drift-diffusion model and a probabilistic hazard model to our experimental setting without reaction times. We retain six lumped parameters in both models characterizing peripheral and central mechanisms. Both models have similar psychophysical functions, but the hazard model is computationally more efficient. The model-based effects of temporal stimulus parameters on detection thresholds are consistent with those from human subject data.


Assuntos
Simulação por Computador , Modelos Biológicos , Fibras Nervosas/fisiologia , Peptídeos Opioides/fisiologia , Detecção de Sinal Psicológico/fisiologia , Análise de Variância , Limiar Diferencial/fisiologia , Feminino , Humanos , Modelos Logísticos , Masculino , Psicofísica , Tempo de Reação , Estimulação Elétrica Nervosa Transcutânea
15.
Atten Percept Psychophys ; 77(4): 1440-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25810158

RESUMO

Methods to obtain estimates of psychophysical functions are used in numerous fields, such as audiology, vision, and pain. Neurophysiological and psychological processes underlying this function are assumed to remain stationary throughout a psychophysical experiment. However, violation of this assumption (e.g., due to habituation or changing decisional factors) likely affects the estimates of psychophysical parameters. We used computer simulations to study how non-stationary processes, resulting in a time-dependent psychophysical function, affect threshold and slope estimates. Moreover, we propose methods to improve the estimation quality when stationarity is violated. A psychophysical detection experiment was modeled as a stochastic process ruled by a logistic psychophysical function. The threshold was modeled to drift over time and was defined as either a linear or nonlinear function. Threshold and slope estimates were obtained by using three estimation procedures: a static procedure assuming stationarity, a relaxed procedure accounting for linear effects of time, and a threshold tracking paradigm. For illustrative purposes, data acquired from two human subjects were used to estimate their thresholds and slopes using all estimation procedures. Threshold estimates obtained by all estimations procedures were similar to the mean true threshold. However, due to threshold drift, the slope was underestimated by the static procedure. The relaxed procedure only underestimated the slope when the threshold drifted nonlinearly over time. The tracking paradigm performed best and therefore, we recommend using the tracking paradigm in human psychophysical detection experiments to obtain estimates of the threshold and slope and to identify the mode of non-stationarity.


Assuntos
Psicofísica/métodos , Limiar Sensorial , Simulação por Computador , Estimulação Elétrica , Humanos , Modelos Logísticos , Fatores de Tempo
16.
Behav Res Methods ; 46(1): 55-66, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23835651

RESUMO

Psychophysical thresholds reflect the state of the underlying nociceptive mechanisms. For example, noxious events can activate endogenous analgesic mechanisms that increase the nociceptive threshold. Therefore, tracking thresholds over time facilitates the investigation of the dynamics of these underlying mechanisms. Threshold tracking techniques should use efficient methods for stimulus selection and threshold estimation. This study compares, in simulation and in human psychophysical experiments, the performance of different combinations of adaptive stimulus selection procedures and threshold estimation methods. Monte Carlo simulations were first performed to compare the bias and precision of threshold estimates produced by three different stimulus selection procedures (simple staircase, random staircase, and minimum entropy procedure) and two estimation methods (logistic regression and Bayesian estimation). Logistic regression and Bayesian estimations resulted in similar precision only when the prior probability distributions (PDs) were chosen appropriately. The minimum entropy and simple staircase procedures achieved the highest precision, while the random staircase procedure was the least sensitive to different procedure-specific settings. Next, the simple staircase and random staircase procedures, in combination with logistic regression, were compared in a human subject study (n = 30). Electrocutaneous stimulation was used to track the nociceptive perception threshold before, during, and after a cold pressor task, which served as the conditioning stimulus. With both procedures, habituation was detected, as well as changes induced by the conditioning stimulus. However, the random staircase procedure achieved a higher precision. We recommend using the random staircase over the simple staircase procedure, in combination with logistic regression, for nonstationary threshold tracking experiments.


Assuntos
Modelos Psicológicos , Monitorização Fisiológica/métodos , Método de Monte Carlo , Nociceptores/fisiologia , Psicofísica/métodos , Limiar Sensorial/fisiologia , Estimulação Elétrica Nervosa Transcutânea/instrumentação , Adulto , Teorema de Bayes , Viés , Limiar Diferencial/fisiologia , Desenho de Equipamento , Feminino , Mãos , Humanos , Imersão , Modelos Logísticos , Masculino , Modelos Estatísticos , Monitorização Fisiológica/instrumentação , Distribuição Aleatória , Valores de Referência , Software , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...